6. HOPF BUNDLE AND AROUND.

By $|z|$ we denote an absolute value of the complex number $z:|a+b i|=\sqrt{a^{2}+b^{2}}$. It is known that $|z w|=$ $|z| \cdot|w|$. By \bar{z} one denotes the complex conjugate of $z: \overline{a+b i} \stackrel{\text { def }}{=} a-b i$; apparently, $|\bar{z}|=|z|$ and $|z|^{2}=z \bar{z}$. Denote by M the set $\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\} \subset \mathbb{C}^{2}$.

Problem 1 (Heegaard splitting). Prove that (a) M is homeomorphic to S^{3}. (b) $M_{+} \stackrel{\text { def }}{=}\{(z, w) \in M| | z|\geq|w|\}$ and $M_{-} \stackrel{\text { def }}{=}\left\{(z, w) \in M| | z|\leq|w|\}\right.$ are homeomorphic to a solid torus $D^{2} \times S^{1}$ (where D^{2} is a 2-disk), and $M_{+} \cap M_{-}$is homeomorphic to a 2-torus $S^{1} \times S^{1}$.

Problem 2 (Hopf bundle). (a) Consider a map $f: M \rightarrow \mathbb{C} P^{1}$ given by the formula $f(z, w)=[z: w]$. Prove that for any $a \in \mathbb{C} P^{1}$ the preimage f^{-1} is homeomorphic to a circle S^{1}. (b) Prove that the set $\Omega=\{(z, s) \in M \mid s \in[0,1]\}$ is homeomorphic to a disk. (c) Prove that the boundary of Ω is $f^{-1}([1: 0])$, and for any $a \neq[1: 0]$ the intersection $f^{-1}(a) \cap \Omega$ consists of 1 point.
Problem $3(\mathrm{SU}(2))$. Prove that the matrices $A_{z, w} \stackrel{\text { def }}{=}\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)$ where $(z, w) \in M$ form a group, and $A_{z, w} M=$ M for any $(z, w) \in M$.

