6. HOPF BUNDLE AND AROUND.

By |z| we denote an absolute value of the complex number z: $|a + bi| = \sqrt{a^2 + b^2}$. It is known that $|zw| = |z| \cdot |w|$. By \overline{z} one denotes the complex conjugate of z: $\overline{a + bi} \stackrel{\text{def}}{=} a - bi$; apparently, $|\overline{z}| = |z|$ and $|z|^2 = z\overline{z}$. Denote by M the set $\{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\} \subset \mathbb{C}^2$.

Problem 1 (Heegaard splitting). Prove that (a) M is homeomorphic to S^3 . (b) $M_+ \stackrel{\text{def}}{=} \{(z, w) \in M \mid |z| \geq |w|\}$ and $M_- \stackrel{\text{def}}{=} \{(z, w) \in M \mid |z| \leq |w|\}$ are homeomorphic to a solid torus $D^2 \times S^1$ (where D^2 is a 2-disk), and $M_+ \cap M_-$ is homeomorphic to a 2-torus $S^1 \times S^1$.

Problem 2 (Hopf bundle). (a) Consider a map $f: M \to \mathbb{C}P^1$ given by the formula f(z, w) = [z: w]. Prove that for any $a \in \mathbb{C}P^1$ the preimage f^{-1} is homeomorphic to a circle S^1 . (b) Prove that the set $\Omega = \{(z, s) \in M \mid s \in [0, 1]\}$ is homeomorphic to a disk. (c) Prove that the boundary of Ω is $f^{-1}([1:0])$, and for any $a \neq [1:0]$ the intersection $f^{-1}(a) \cap \Omega$ consists of 1 point.

Problem 3 (SU(2)). Prove that the matrices $A_{z,w} \stackrel{\text{def}}{=} \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$ where $(z,w) \in M$ form a group, and $A_{z,w}M = M$ for any $(z,w) \in M$.