3. COMPACTNESS.

Problem 1. Prove that $\cos \sin x>\sin \cos x$ for all $x \in \mathbb{R}$.
Hint. $\cos x=\sin (\pi / 2-x)$.
Problem 2. Recall that every continuous map $f:[0,1] \rightarrow[0,1]$ has a fixed point, that is, a point t such that $f(t)=t$. Does the statement remain true if $[0,1]$ is replaced by $(0,1)$? By \mathbb{R} ?
Problem 3. Prove or diprove all the statements like "if an open/closed segment is a union of some family of open/closed segments, then it is a union of a finite number of them".
Problem 4. Prove the inequality $\frac{x_{1}+\cdots+x_{n}}{n} \leq \sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}}$.
Problem 5. Let X be an n-gon inscribed into a circle ω, and Y be a regular n-gon inscribed into ω. Prove that the area of X is not greater than the area of Y.

