3. COMPACTNESS.

Problem 1. Prove that $\cos \sin x > \sin \cos x$ for all $x \in \mathbb{R}$.

Hint. $\cos x = \sin(\pi/2 - x)$.

Problem 2. Recall that every continuous map $f:[0,1] \to [0,1]$ has a fixed point, that is, a point t such that f(t) = t. Does the statement remain true if [0,1] is replaced by (0,1)? By \mathbb{R} ?

Problem 3. Prove or diprove all the statements like "if an open/closed segment is a union of some family of open/closed segments, then it is a union of a finite number of them".

Problem 4. Prove the inequality $\frac{x_1 + \dots + x_n}{n} \leq \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}$.

Problem 5. Let X be an n-gon inscribed into a circle ω , and Y be a regular n-gon inscribed into ω . Prove that the area of X is not greater than the area of Y.