На главную
Расписание занятий

Математический коллоквиум факультета математики

Ближайшие доклады   Предыдущие доклады   Материалы прошлых лет:  09/10 

Коллоквиумы происходят с 1700 в ауд. 317-319 матфака ГУ-ВШЭ (ул. Вавилова, д. 7, третий этаж) и на них приглашаются все студенты и преподаватели.

Напоминаем, что проход в здание осуществляется по списку, записаться в который можно за день до визита у Алексея Городенцева (город блямба итеп ру на латинице). Таким же образом можно включить/выключить адрес Вашей электронной почты в рассылке анонсов коллоквиума.

Ближайшие доклады

среда, 8 июня 2011, 1530, ауд. 317-319:
Владимир Воеводский (Institute for Advanced Study, Princeton).
«Унивалентные основания математики»

Предыдущие доклады

четверг, 2 июня 2011, 1600, ауд. 317-319:
Mark Mineev-Weinstein (Los Alamos, US, Max Planck Inst., Germany).
«Nonlinear Growth and Integrable Interface Dynamics»
        An arbitrary interface in two-dimensional Laplacian growth (as well as its elliptic extensions) is represented as resulting from the evolution of an initial circle under a specific distribution of sources situated both inside and outside the moving domain. We are solving the inverse potential problem, which stems from I. Newton (through works of Kelvin, Poincare and Herglotz) to P. S. Novikoff, by recovering the singularities of the Schwarz function, which we associate with a moving interface. Finally, we will report wide classes of time-dependent exact solutions, which we have recently found. These solutions appear to be of great significance for various problems in classical and modern physics.
        If time permits, I will also address relations of this work to the integrable two-dimensional Toda hierarchy.
понедельник, 25 апреля 2011, 1530, ауд. 317-319:
Илья Богаевский.
«Разрывные градиентные ОДУ и принцип наименьшего действия»
        Анонос доклада (PDF, 50 kb).
вторник, 1 марта 2011, 1700, ауд. 317-319:
Валентин Овсиенко (CNRS, Institut Camille Jordan, Universite Lyon 1).
«The big familly of algebras: quaternions, octonions and othere cousins»
        «The real numbers are the dependable breadwinner of the family, the complete ordered field we all rely on. The complex numbers are a slightly flashier but still respectable younger brother: not ordered, but algebraically complete. The quaternions, being noncommutative, are the eccentric cousin who is shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they are nonassociative.»
The citation from John Baez offers an excellent description of the familly. I will introduce other algebras-second-cousins and explain the main properties that characterize them (and distinguish from the other Cayley-Dickson algebras). As an application, I will talk of the celebrated Hurwitz problem on sums of squares and its relations to topology.
6 декабря 2010, 1700, ауд. 317-319:
Ulf Persson (Chalmers Univ, Goteborg).
«The Octaplex»
        The talk will concern various descriptions of it and related polytopes such as the tesseract and half-tesseract. I will present the symmetry group and its geometrical representation and give lists of conjugacy classes. In the end I will explain it all by considering the quaternions.

Rambler's Top100